M2. (a) 5 (1)
(b) 2:2:2:3:3 (1)
any order but not multiples

$$CH_3 - C - (R)$$

(f)

$$\begin{array}{c}
(CO) & (CO) \\
CH_3 - C - CH_2CH_2 - C - OCH_2CH_3 \\
\parallel & \blacksquare \\
O & O \\
allow (1) for CH_3COCH_2CH_2OCOCH_2CH_3 \\
or CH_3COOCH_2CH_2COCH_2CH_3 \\
Must be C_7H_{12}O_3
\end{array}$$

[9]

3

1

M3. (a) $K_2Cr_2O_7/H_2SO_4$ reuced by

 $CH_3CH_2CH_2CH_2OH$ (1)

oxidised to $CH_3(CH_2)_2CHO$ (1) and $CH_3(CH_2)_2COOH$ (1)

CH₃CH₂CH₂CHO (1)

oxidised to $CH_3(CH_2)_2COOH$ (1)

Equation: $Cr_2O_7^{2-} + 14H^* + 6e^- \rightarrow 2Cr^{3*} + 7H_2O$ (1) Note: Deduct one if all three compounds given as reducing agents.

(b) Tollens' reduced by CH₃CH₂CH₂CHO (1)

oxidised to $CH_3(CH_2)_2COOH$ (1)

Equation $[Ag(NH_3)_2]^* + e^- \rightarrow Ag + 2NH_3$ (1)

(c) $CH_3CH_2CH_2CH_2OH$ (1)

Product CH₃CH₂CH₂CH₂OOCCH₃ (1)

(CH₃)₃COH

Product (CH₃)₃COOCCH₃ (1)

(d) $CH_3CH_2CH_2OH$ has five peaks (1)

(CH₃)₃COH has two peaks (1)

[15]

6

3

4

2

М5.		(a)	Pentan-2-one	1
	(b)	(i)	1680 – 1750 (cm ⁻¹)	1
		(ii)	3230 – 3550 or 1000 – 1300 (cm ⁻¹)	1
		(iii)	4	1

(c)

Reagent	K₂Cr₂O ₇ /H⁺	KMnO₄/H⁺		CH₃COOH/ H₂SO₄	1
with C	no reaction	no reaction	no reaction	no reaction	1
with D	goes green	goes colourless	effervescence	smell	1

(penalise incomplete reagent e.g. $K_2Cr_2O_7$ or $Cr_2O_7^{2-}/H^+$ then mark on)

1 1

(d)

Reagent	Tollens	Fehlings or Benedicts
with E	silver	red ppt or goes red
	(mirror)	(not red solution)

[9]

[1]

M6. X is methyl propanoate

[10]

M7. (a)

Isomerism: E-Z isomerism

If written answer is correct, ignore incorrect labelling of structures. If no written answer, allow correctly labelled structures.

Both COOH groups must be on the same side/ close together/ cis

No rotation about C=C axis

1

1

1

1

Allow

(b) Br₂ / HBr / H₂SO₄ / H⁺ / Br⁺ / NO₂⁺ (*Mark M1*)

NB If electrophile H^* / Br^* / NO_{2^*} allow M1, M2 and M4

1

1

(c) e.g. 2NaOH + HO₂CCHCHCO₂H \rightarrow NaO₂CCHCHCO₂Na + 2H₂O

Both H replaced

Balanced for atoms and charges

 $\begin{array}{ll} \textit{NB Allow ionic equations and} & \textit{2NaOH} + C_4 H_4 O_4 \rightarrow \\ C_4 H_2 O_4 Na_2 + 2 H_2 O \\ & \textit{Allow one if structure incorrect but molecular formula} \\ & \textit{correct} \\ & \textit{Allow one for a correct equation showing one H replaced} \\ \end{array}$

(d)	M1	Two peaks	1
	М2	No splitting or singlets	1
	М3	(Two) non-equivalent protons or two proton environments	1
	M4	No adjacent protons	
	М5	Same area under the two peaks or same relative intensity	1
		NB Doublet could score M1 and M3 or M5 (Max 2) More than two peaks CE = 0 Apply the "list principle" to incorrect answers if more	1
		than 3 given	Max 3

[15]