M1.C

M2. (a) $5(1)$
(b) 2:2:2:3:3 (1)
any order but not multiples
(c) ${\underset{\|}{\mathrm{C}} \mathrm{CH}_{3}-\mathrm{C}(\mathrm{R})}_{\substack{\mathrm{C}}}$
(1)
(e) $\mathrm{CH}_{2} \mathrm{CH}_{2}(1)$
(f)
 (2) allow (1) for $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{OCOCH}_{2} \mathrm{CH}_{3}$ or $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$ Must be $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3}$

M3. (a) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}$ reuced by
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ (1)
oxidised to $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHO}$ (1)
and $\quad \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$ (1)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ (1)
oxidised to $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$ (1)
Equation: $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}(1)$
Note: Deduct one if all three compounds given as reducing agents.
(b) Tollens' reduced by $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ (1)
oxidised to $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$ (1)
Equation $\quad\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}+2 \mathrm{NH}_{3}(\mathbf{1})$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ (1)

Product $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OOCCH}_{3}$ (1)
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
Product $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COOCCH}_{3}$ (1)
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ has five peaks (1)
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ has two peaks (1)

M5. (a) Pentan-2-one
(b) (i) $1680-1750\left(\mathrm{~cm}^{-1}\right)$
(ii) $3230-3550$ or $1000-1300\left(\mathrm{~cm}^{-1}\right)$
(iii) 4
(c)

Reagent	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$	$\mathrm{KMnO}_{4} / \mathrm{H}^{+}$	Na	$\mathrm{CH}_{3} \mathrm{COOH} /$ $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathbf{1}$			$\mathbf{1}$	
with C	no reaction	no reaction	no reaction	no reaction
with D	goes green	goes colourless	effervescence	smell
\mathbf{l}	$\mathbf{1}$			

(penalise incomplete reagent e.g. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ or $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{H}^{+}$then mark on)
(d)

Reagent	Tollens	Fehlings or Benedicts
with E	silver (mirror)	red ppt or goes red (not red solution)

M6. $\quad \mathbf{X}$ is methyl propanoate

M1 for arrow and lone pair,

M2 for arrow
addition-elimination

Spectrum 2
if thinks Spectrum $1=X$ can only score for structure of Y
\mathbf{Y} is $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$
1

The two marks for explanation are awarded for discussing one or more of the four peaks (not those for the CH_{3} of the ethyl groups)
for stated δ values the integration or the splitting should be related to the structure: e.g. structure of \mathbf{X} shows that
at $\delta 3.7-4.1$ (1) spectrum of X should have integration $3 /$ singlet (1)
or
at $\delta 2.1$ - 2.6 (1) spectrum of \mathbf{X} should have integration 2 / quartet (1)
Spectrum 2 has these
[OR Spectrum 1 has
at $3.7-4.1$ (1) quartet / integration 2 (1) so not X
at 2.1 - 2.6 (1) singlet / integration 3 (1) so not X]

M7. (a)

NB The bonds shown in the structure must be correct
Isomerism: E-Z isomerism
If written answer is correct, ignore incorrect labelling of structures.
If no written answer, allow correctly labelled structures.

Both COOH groups must be on the same side/ close together/ cis

No rotation about $\mathrm{C}=\mathrm{C}$ axis

Structure

Allow

(b) $\mathrm{Br}_{2} / \mathrm{HBr} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}^{+} / \mathrm{Br}^{+} / \mathrm{NO}_{2}^{+}$(Mark M1)

NB If electrophile $\mathrm{H}^{+} / \mathrm{Br}^{+} / \mathrm{NO}_{2}^{+}$allow M1, M2 and M4
(c) e.g. $2 \mathrm{NaOH}+\mathrm{HO}_{2} \mathrm{CCHCHCO}_{2} \mathrm{H} \rightarrow \mathrm{NaO}_{2} \mathrm{CCHCHCO}_{2} \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O}$

Both H replaced

Balanced for atoms and charges
NB Allow ionic equations and $\quad 2 \mathrm{NaOH}+\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \rightarrow$ $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4} \mathrm{Na}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Allow one if structure incorrect but molecular formula correct
Allow one for a correct equation showing one H replaced
(d) M1 Two peaks

M2 No splitting or singlets

M3 (Two) non-equivalent protons or two proton environments

M4 No adjacent protons

M5 Same area under the two peaks or same relative intensity
NB Doublet could score M1 and M3 or M5 (Max 2)
More than two peaks $C E=0$
Apply the "list principle" to incorrect answers if more than 3 given

